23 research outputs found

    Correlation of Matrix Metalloproteinases and Tissue Inhibitors of Matrix Metalloproteinase Expression in Ileal Carcinoids, Lymph Nodes and Liver Metastasis with Prognosis and Survival

    Get PDF
    Purpose: Ileal carcinoids are gut epithelial tumors originating from serotonin-containing enterochromaffin (EC) cells. Therapeutic options for effectively inhibiting the growth and spread of metastatic carcinoids are still limited. We aimed to identify the role of matrix metalloproteinases (MMPs) and their endogenous tissue inhibitors (TIMPs) during tumor development and metastasis. Patients and Methods: Tissue samples were obtained from surgically treated patients. Expression of the EC-cell marker, vesicular monoamine transporter-1 (VMAT-1), was used to verify ileal carcinoids. We investigated the differential expression of MMP-2, 7, 9, 11, and 13 and their endogenous inhibitors (TIMP-1, 2, and 3) by quantitative real-time RT-PCR in 25 primary tumors, their corresponding lymph node metastases and/or liver metastases and matched normal mucosa. Results: Significantly increased expression of VMAT-1, MMP-2, MMP-11, TIMP-1 and TIMP-3 was determined by quantitative RT-PCR in EC-cell carcinoids compared to normal intestinal mucosa (p < 0.05). In contrast, MMP-2 and MMP-9 as well as TIMP-1, TIMP-2, and TIMP-3 expression in primary tumors of patients with liver metastases (M1) was significantly lower than in patients lacking liver metastases (M0). EC-cell tumors were significantly larger in the M1 group of tumors, while VMAT-1 expression was significantly decreased. We found an inverse correlation between tumor size and prognosis. Univariate analysis further revealed that decreased expression of VMAT-1, MMP-2 and TIMP-3 in primary tumors was significantly associated with a reduced survival time of the patients. Conclusion: Our data reveal that MMP-2 and TIMP-3 expression together with VMAT-1 expression are of potential prognostic and clinical value in ileal carcinoids. Copyright (C) 2008 S. Karger AG, Base

    Loss of RAF kinase inhibitor protein is involved in myelomonocytic differentiation and aggravates RAS-driven myeloid leukemogenesis

    Get PDF
    RAS-signaling mutations induce the myelomonocytic differentiation and proliferation of hematopoietic stem and progenitor cells. Moreover, they are important players in the development of myeloid neoplasias. RAF kinase inhibitor protein (RKIP) is a negative regulator of RAS-signaling. As RKIP loss has recently been described in RAS-mutated myelomonocytic acute myeloid leukemia, we now aimed to analyze its role in myelomonocytic differentiation and RAS-driven leukemogenesis. Therefore, we initially analyzed RKIP expression during human and murine hematopoietic differentiation and observed that it is high in hematopoietic stem and progenitor cells and lymphoid cells but decreases in cells belonging to the myeloid lineage. By employing short hairpin RNA knockdown experiments in CD34+ umbilical cord blood cells and the undifferentiated acute myeloid leukemia cell line HL-60, we show that RKIP loss is indeed functionally involved in myelomonocytic lineage commitment and drives the myelomonocytic differentiation of hematopoietic stem and progenitor cells. These results could be confirmed in vivo, where Rkip deletion induced a myelomonocytic differentiation bias in mice by amplifying the effects of granulocyte macrophage-colony-stimulating factor. We further show that RKIP is of relevance for RAS-driven myelomonocytic leukemogenesis by demonstrating that Rkip deletion aggravates the development of a myeloproliferative disease in NrasG12D-mutated mice. Mechanistically, we demonstrate that RKIP loss increases the activity of the RAS-MAPK/ERK signaling module. Finally, we prove the clinical relevance of these findings by showing that RKIP loss is a frequent event in chronic myelomonocytic leukemia, and that it co-occurs with RAS-signaling mutations. Taken together, these data establish RKIP as novel player in RAS-driven myeloid leukemogenesis

    Expression and clinical significance of Glucose Regulated Proteins GRP78 (BiP) and GRP94 (GP96) in human adenocarcinomas of the esophagus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glucose regulated proteins (GRPs) are main regulators of cellular homeostasis due to their role as molecular chaperones. Moreover, the functions of GRPs suggest that they also may play important roles in cancer biology. In this study we investigated the glucose regulated proteins GRP78 (BiP) and GRP94 (GP96) in a series of human esophageal adenocarcinomas to determine their implications in cancer progression and prognosis.</p> <p>Methods</p> <p>Formalin-fixed, paraffin-embedded tissues of primary resected esophageal (Barrett) adenocarcinomas (n = 137) and corresponding normal tissue were investigated. mRNA-gene expression levels of GRP78 and GRP94 were determined by quantitative real-time RT-PCR after mRNA extraction. Protein expression analysis was performed with immunohistochemical staining of the cases, assembled on a tissue micorarray. The results were correlated with pathologic features (pT, pN, G) and overall survival.</p> <p>Results</p> <p>GRP78 and GRP94 mRNA were expressed in all tumors. The relative gene expression of GRP78 was significantly higher in early cancers (pT1m and pT1sm) as compared to more advanced stages (pT2 and pT3) and normal tissue (p = 0.031). Highly differentiated tumors showed also higher GRP78 mRNA levels compared to moderate and low differentiated tumors (p = 0.035). In addition, patients with higher GRP78 levels tended to show a survival benefit (p = 0.07). GRP94 mRNA-levels showed no association to pathological features or clinical outcome.</p> <p>GRP78 and GRP94 protein expression was detectable by immunohistochemistry in all tumors. There was a significant correlation between a strong GRP78 protein expression and early tumor stages (pT1m and pT1sm, p = 0.038). For GRP94 low to moderate protein expression was significantly associated with earlier tumor stage (p = 0.001) and less lymph node involvement (p = 0.036). Interestingly, the patients with combined strong GRP78 and GRP94 protein expression exclusively showed either early (pT1m or pT1sm) or advanced (pT3) tumor stages and no pT2 stage (p = 0.031).</p> <p>Conclusion</p> <p>We could demonstrate an association of GRP78 and GRP94 mRNA and protein expression with tumor stage and behaviour in esophageal adenocarcinomas. Increased expression of GRP78 may be responsible for controlling local tumor growth in early tumor stages, while high expression of GRP78 and GRP94 in advanced stages may be dependent from other factors like cellular stress reactions due to glucose deprivation, hypoxia or the hosts' immune response.</p
    corecore